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Abstract— This paper investigates a novel radar concept that 

is based on a minimalistic, small-aperture antenna array but 

features intelligent beam-shape switching and artificial-

intelligence signal processing. In contrast to conventional phased-

arrays, size, cost, and hardware complexity are drastically 

reduced by the proposed dual-antenna array which can create a 

broad and a frequency-scanning notched beam shape. The 

angular-resolution and target discrimination performance of the 

proposed radar concept have been validated by radar simulations 

for single and multiple target scenarios. For the signal processing, 

two convolutional neural networks (CNN) and a multilayer 

perceptron model are benchmarked against each other. A further 

CNN is implemented for estimating the number of targets, which 

can be used to pre-select the type of network determining range 

and cross-range of multiple targets. This paper shows that a small 

antenna aperture frontend in combination with beam-shape 

switching and artificial-intelligence signal processing methods is a 

suitable hardware-efficient radar concept for accurate multi-

target location. 
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I. INTRODUCTION 

Radar target detection and discrimination require identifying 
several objects and associate range and angular position 
coordinate to them, with range/angular resolution and accuracy 
determined by the radar performance. Target localization has 
various civilian and defence applications [1]-[3]. Alternative 
applications of a typical radar frontend are communication 
channel estimation or imaging applications including detection 
of concealed weapons [4, 5]. Electronically steered phased-array 
radars [6, 7] are widely used due to their narrow, scanning main 
lobe which can be accurately positioned over a wide field of 
view for resolving individual targets. However, phased-array 
radars require a large aperture and have a high hardware 
complexity, due to the need for phase-controlling of individual 
antenna elements [10, 11].An early frequency-beam-scanning 
array was proposed already in 1966 [8]. Another application of 
this concept was shown in 1979 by [9] using an x-band 
microstrip array. In [12] a parallel-plate waveguide-based leaky-
wave antenna, integrated with a planar reflector in a 
micromachining process, was used to steer the antenna radiation 
pattern from 220 to 300 GHz. Substrate integrated waveguide 
(SIW) technology has also been explored for beam-steering [13-
15]. Multi-static radar systems using sparsely populated antenna 
arrays provide a way for high positional accuracy at significantly 
reduced hardware complexity as compared to a fully-populated 

phased array but requires extensive time-multiplexing and 
computational complexity which drastically impacts the radar 
response time, and cannot handle objects moving fast relative to 
the array scanning time [16]. Many radar detection problems 
suffer from high computational complexity, which can originate 
from the radar concept, noisy data collection, nonlinear 
parameters, and poor resolution [18]. In [19] an adaptive signal 
processing approach was implemented for solving the inverse 
scattering problem for characterizing material properties 
Artificial Neural Networks (ANN) have shown the ability to 
overcome such problems. Convolutional Neural Networks 
(CNN) was used as an approved substitute for solving iterative 
inverse scattering problems at a lower cost of time and 
computation costs [20], and an electromagnetic inversion 
problem was transposed into a solvable problem using a Deep-
CNN network [21]. These results show an outstanding 
performance where conventional methods often fail due to 
challenges of high dimensional problems, nontrivial selection of 
starting points, and finding the false local minimum. Besides, 
neural networks have established themselves in feature 
extraction and prediction problems, for instance, implemented a 
CNN  to find specific features of a hand gesture without beam 
steering [21]. Analyzing time-sequential signal frames further 
assists to classify gestures from otherwise non-deterministic 
radar signals.  

This paper presents a new radar concept, which in contrast 
to utilizing a large antenna-aperture and large hardware-
complexity phased arrays, utilizes only two antenna elements 
but features beam-shape switching and frequency-sweeping. In 
combination with an artificial-intelligence algorithm trained on 
the radar signals from the two beam shapes, it is hypothesized 
that this radar architecture gives sufficient information for 
separating multiple targets in range and angle, despite its 
minimalistic aperture. 

II. RADAR FRONT-END CONCEPT 

The radar concept presented in this paper is based on a 
frequency-sweeping dual-antenna front-end, with a physical 
antenna pitch of 0.75λ at the center frequency to get optimum 
main patter, and a very small overall antenna aperture of only 
1.25 λ (at the center frequency), using open-ended waveguides. 
The antennas are fed from the same signal source via a power 
splitter, and one of the antennas has an additional delay line of 
13 λ inserted, which results in a frequency-depending phase 
difference and thus beam-steering of the relatively wide main 
lobe with an average Half Power Beam Width (HPBW) of 



28.75˚. In the following, this beam shape is referred to as sigma 
or broad beam. In addition to this broad-beam sweeping, a 
second beam-shape is used by steering the otherwise identical 
antenna-network in anti-phase, resulting in a notched beam [17] 
which also scans over the field of view by frequency sweeping, 
which is in the following referred to as the delta beam shape. 

    

                  (a)                                     (b) 

Fig. 1.  Beam-shapes: (a) frequency-swept broad beam (sigma beam) 
created by two slot antennas at a pitch of 0.75 λ; (b) frequency-swept notched 
beam (delta beam), with anti-phase antenna steering. Red=radiation pattern at 
centre frequency (243 GHz), purple=pattern at lower end of the band (238 
GHz), gray=radiation patterns when scanning from 238-248 GHz. 

The radar is operated with a stepped-frequency waveform 
with a 25 MHz frequency increment over a bandwidth of 10 GHz 
from 238-248 GHz (frequency range according to specifications 
in this research project). The azimuth-plane radiation pattern of 
the sigma beam is shown in Fig. 1a, and of the delta beam is 
shown in Fig. 1b, with a field-of-view of the broad beam from -
20.63˚ to 20.63˚. The range resolution of the wide beam is 
assumed to be close to the theoretical resolution of the overall 
bandwidth of 1.5 cm. The main challenge for this radar system 
based, due to the small antenna aperture, is the cross-range or 
angular resolution, for which a combination of the information 
of the two-beam shapes, both scanning in azimuth by frequency 
sweeping, is utilized. 

III. RADAR SCENARIO SIMULATION 

For verifying the performance of the proposed radar concept, 
a radar simulator was implemented in MATLAB, featuring 
arbitrary positioning of multiple antennas with individual phase, 

amplitude control, and far-field radiation pattern, as well as 
linear-phase delay lines for the frequency-sweeping, and 
constant-phase phase-shifters for creating the notch, and 

arbitrary placement of targets modelled as point scatterers with 
a programmable radar cross-section. Single and multi-target 
scenarios were created randomly for training and testing the 
algorithms. Fig. 2 shows a triple targets scenario. For every 
scenario two frequency-dependent signals corresponding to the 
scanning sigma and the delta beam shapes are simulated, which 
are used to train and test the signal processing algorithms. For 
determining the angular target discrimination in multiple-target 
scenarios, the targets were placed within the theoretical range 
resolution (1.5 cm for a 10 GHz bandwidth) so that target 
discrimination of the algorithm by range information is be 
excluded. 

IV. NEURAL NETWORK SIGNAL PROCESSING METHODS 

Three different neural network models were implemented 
and benchmarked. Models A and B comprise a CNN 
architecture and model C is implemented as a Multilayer 
Perceptron (MLP). The raw data consists of a 2-dimensional 
data set (real and imaginary parts of the received signal), indexed 
by the frequency points. Each of the two beam-shapes is 
represented in a separate data channel. These data stream, along 
with the known test target positions are fed to three different 
machine learning models which were benchmarked for the 
proposed radar concept. To mitigate overfitting due to the 
inherent intricate structure of such problems, the input data is 
normalized in the range [0, 1] and a Batch Normalization layer 
[23] was employed among the network layers. 

The internal structure of model A is different from model B, 
since for model A, a single 3D input stream (3D image) is 
created by combining the two 2D datasets of the beam shapes as 
two discrete channels of an image, whereas model B is fed with 
the two separate 2D data sets (2D images). For model C, the 
neural network's input stages are further simplified by combing 
all input data into a single, plain-value, vector. Models A and B 
were implemented for detecting up to two targets (2 target 
position outputs), whereas model C was implemented for 
detecting up to three targets (3 target position outputs). The two 
CNN models learn to select useful frequencies by weighing them 
over others through an iterative training process based on a 
Backpropagation algorithm [22]. Based on a 3-dimensional 
internal network structure, model A is less sensitive to noise and 
faulty data. Models A and B were trained for single and dual 
targets with up to 62000 training data sets composed of 80% 
training, 10% validation, and 10% test datasets. The minimum 
square error (MSE) to the known reference data (known target 
positions of the training sets) was used as the error metric for the 
optimization of the back-propagation algorithm. After 50 epochs 
of the training process, the network was finally used for 
predicting multi-target scenarios with target positions unknown 
to the machine. Model B has a higher degree of generalization 
than model A and can be trained simultaneously for single and 
multiple targets. Notwithstanding more sensitivity to signal 
noise and faulty data, model B results in Table 1 indicate a better 
generalization in determining angles for scenarios in which the 
model has no a-prior information on the number of targets. 
Model C is an MLP model [23], characterized by a much simpler 
structure and reduced computation complexity, using only a few 
different pre-determined frequency points. Three, five and, 
seven frequency points were arbitrarily chosen. For the created 
test scenarios, the model with only three frequency points 

 

Fig. 2.  A multi-target scenario for training and testing the proposed radar 

system algorithms. 



(center frequency, lower and upper limit of bandwidth) exhibited 
the best results, but for data of a more random nature (i.e. with 
high noise level), models with more frequency points might 
perform better. Comparing to previous models the MLP model 
suffers from higher noise susceptibility but provides faster 
computation time when computation resources are limited. 
Model C was only trained with 16000 or 30000 data sets, since 
a too large number of test data sets can cause overfitting of this 
type of simplified model  

V. RESULTS 

To evaluate the proposed neural network models, a Root 

Mean Square Error (RMSE) criterion is introduced, validating 

the deviation to the known target positions of the training data 

sets, as shown in equation (1). Also, a Prediction Error (PE), 

which is defined by equation (2), is calculated as standard error. 
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𝑁
√∑ (𝑡𝑎𝑟𝑔𝑒𝑡𝑖 − 𝑜𝑢𝑡𝑝𝑢𝑡𝑖)

2𝑁
𝑖=1  (1) 

    𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑡𝑎𝑟𝑔𝑒𝑡𝑖 − 𝑜𝑢𝑡𝑝𝑢𝑡𝑖)

2𝑁
𝑖=1   (2) 

With N the size of the test-set, 𝑡𝑎𝑟𝑔𝑒𝑡𝑖 and 𝑜𝑢𝑡𝑝𝑢𝑡
𝑖
 are real 

and predicted values of a target’s angle, respectively, in the 

𝑖𝑡ℎscenario.  

The CNN models (A and B) are evaluated for single and dual 
target scenarios. However, the structure of model A works only 
well when either trained and tested exclusively for single targets 
(resulting in model A-1) or when trained and tested exclusively 
for dual targets (model A-2), as shown in Fig. 3 and summarized 
in Table I for 1000 test sets.  

In contrast to that, model B's structure provides good results 
when trained directly for a mixed and unknown number of 

targets. The model can even determine the unknown number of 
targets, as for single targets the two outputs are expected to give 
near-identical values, but different values for dual targets. This 
is confirmed by the single-target tests shown in Fig. 4a. Fig. 4b 
shows that the two outputs of the model have an RMSE error of 
less than 0.5˚ when tested for dual targets. The results are also 
summarized in Table I for 1000 test sets. The overall error of 
model B is larger than for model variants A, which can be seen 
in Table I, but model B is more universally applicable since it is 
not limited to a specific number of targets. 

Table I.  PE and RMSE angular error results for networks A and B in degrees, 
for testing the networks both with single and dual target scenarios. 

Model 

Target scenario 
Error first output 

Error second 

output 

Trained Tested PE RMSE PE RMSE 

CNN A1 single single 0.0077 0.243 - - 

CNN A2 dual dual 0.0087 0.2748 0.0100 0.3176 

CNN B 
single 
+dual 

single 0.0107 0.3386 0.0099 0.3139 

dual 0.0121 0.3824 0.0161 0.5088 

The MLP-type network C was trained simultaneously for 
both single and dual-targets, as model B, and also for triple-
target scenarios. Table II shows the error values for model C for 
different dataset sizes. Although this network's error values are 
comparable to the CNN models of type A and B, this model, due 

 

(a) 

 

(b) 

Fig. 3.  Prediction error results for CNN models of type A: (a) model A-1, 
network trained and tested with single targets only; (b) model A-2, network 
trained and tested with dual targets only. Deviation of predicted angle,𝜃𝑝 to the 

real angle, 𝜃𝑟 on the y-axis, and real angle 𝜃𝑟 on the x-axis. 

 

 

(a) 

 

(b) 

Fig. 4.  Angular error results of both outputs of network B, trained for mixed 
single and dual target scenarios: (a) near-identical outputs when testing with 
single targets only; (b) prediction error for dual targets. Deviation of  𝜃𝑝, 𝜃𝑟 

on y-axis and the  𝜃𝑟 on the x-axis. 



to its structure, is more affected by the dataset size and more 
sensitive to noise in the data. Furthermore, another CNN model 
was implemented for determining the number of targets. The 
training and test data set comprised 96000 data for single, dual 
and triple target scenarios. The results of this model are shown 
in Fig (5) as a confusion matrix. For the 30459 test data sets, the 
model achieved 100% accuracy for estimating the number of 
targets.  

 
Fig. 5.  The confusion matrix for testing the MLP network to predict the number 
of targets for 3 different scenarios. 

VI. CONCLUSION 

This paper proposed three different neural networks for single 
and multiple-target detection and discrimination, using the 
radar signal of a simulated frequency-scanning and dual beam-
shape switching radar system. The lowest error in cross-range 
resolution can be achieved by CNN type A, but this model is 
applicable to a specific number of targets only. Network B can 
predict a mixed number of targets, still with high percision. 
Also, a reduced computation-complexity MLP network was 
investigated which benchmarked equally well to network B. 
When employing an estimator for the number of targets, which 
can be implemented with excellent accuracy as shown in this 
paper, the proper variant of model type A can be selected which 
gives the overall best results. It was shown that the proposed 
drastically reduced front-end size dual-antenna and dual beam-
shape frequency-scanning radar system, in combination with 
artificial-intelligence signal processing, is able to achieve high 
angular accuracy and discrimination for single and multiple 
targets even for an unknown number of targets.  
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Table II.  Angular error results (in degrees) for MLP network C, for different 
number of data sets and different target constellations. 

 

Target 

scenarios 

30000 16000 

PE RMSE PE RMSE 

Single+dual 0.03 0.96 0.03 1.06 

Three targets in 

different range* 

0.07 2.48 0.08 2.63 

Three targets in 

same range* 

0.069 2.21 0.075 2.51 

* within or without the range resolution of 1.5 cm. 


